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FORMULATION OF GENERAL DISCRETE MODELS OF
THERMOMECHANICAL BEHAVIOR OF MATERIALS WITH
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Abstract—This paper is concerned with the development of general discrete models capable of depicting quite
general thermomechanical behavior of a broad class of nonlinear materials with memory. Generalizations of
the finite-element concept are used in conjunction with Coleman’s thermodynamics of simple materials to. obtain.
equations of motion and heat conduction for finite elements of nonlinear continua. The kinematics of finite
elements is developed in general terms, with particular emphasis given to the idea that locally homogeneous
deformations and temperature fields are equivalent to simplex approximations over an element. Certain basic
equations of Coleman’s thermodynamical theory of materials are reviewed and used to develop equations govern-
ing the behavior of a typical finite element, no restrictions being placed on the order of magnitude of the deforma-
tion gradients or temperature gradients. Topological properties of a collection of such elements are introduced
to construct consistent discrete models of dissipative media with arbitrary geometry, and initial and boundary
conditions.

1. INTRODUCTION

THE formulation of discrete models capable of depicting complicated behavior of certain
mechanical systems, dates back to the analytical méchanics of Lagrange. The early efforts,
as well as those of the intervening years, had as their objective the development of simplified
representations of various phenomena for the purpose of obtaining quantitative information
on specific types of mechanical behavior. The well-known method of Rayleigh, introduced
in 1877 and generalized by Ritz in 1909, provided a powerful technique for the approximate
analysis of continuous bodies. More recently, Biot {1-3] presented variational principles and
“Lagrange-type” equations for the analysis of problems in classical linear thermoelasticity
and in linear irreversible thermodynamics.

In recent times, two distinct developments have occurred which make possible, for the
first time, the rational formulation of general discrete models of nonlinear, dissipative
continua. First, there was the development of the concept of finite elements, based on
primitiveideas of piecewise approximation, introduced formally in 1956 in connection with
the approximate analysis of linear plane elasticity problems [4], and recently expanded
and generalized so as to apply to continuous fields in general [5-7]. Second, there was
Coleman’s development of a general thermodynamics of simple materials [8] which served
to generalize or to make obsolete many of the previously held notions on irreversible
thermodynamics.

In the present paper, these two developments are brought together and used to obtain
general discrete models of thermomechanically simple materials with memory. Significantly,
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these models are formulated in a manner consistent with fundamental principles of con-
tinuum mechanics, without resorting to special variational principles. Rather, general
virtual work expressions are derived for thermomechanically simple media and are used to
describe the behavior of finite elements of such media. Since our purpose is to develop a
general and consistent theory for developing discrete models of thermomechanical phen-
omena, we adopt the formalism of direct tensor notation so as to cast the governing equa-
tions in invariant forms valid for any choice of coordinate system. The resulting equations
apply to an extremely broad class of materials and no restrictions on magnitudes of the
deformation gradients, the geometry of the continuum, boundary conditions, isotropy of
the media, etc. are introduced. Previous discrete formulations, including those pertaining
to perfectly elastic solids, viscous fluids, and equations complementary to Biot’s formulation
for linear irreversible thermodynamics, can be obtained as special cases of the general
formulation presented herein.

Following this introductory section, we review, for completeness, certain aspects of the
finite element concept as presented by Oden [7], and lay down general formulae for the
construction of finite element models of continuous fields defined on spaces of finite dimen-
sion. Here the notion of conjugate fields is re-examined as a natural vehicle for obtaining
“generalized variables” (e.g. generalized forces, heat fluxes, entropy flow vectors, etc.)
which are consistent with the approximations underlying their conjugate variables.

In Section 3, we apply the relations developed in the preceding section to obtain a dis-
crete description of the deformation and motion of non-polar media.

In Section 4 we list pertinent results of Coleman’s thermodynamics of materials with
memory [8], and recast certain of the basic equations in a form suitable for use in the con-
struction of finite element models. In the following section, we focus our attention on a
typical finite element of a continuum, on which we bring to bear the general thermo-
dynamical equations and the general kinematical equations for finite elements developed
previously. We then obtain general equations of motion, and heat conduction for a finite
element of a nonlinear continua in terms of the generalized displacements, velocities and
temperatures at discrete nodal points on the element. These equations pertain to a single
element. Corresponding global equations governing the entire assembly of elements
comprising the model, are obtained using a series of singular transformations.

We devote the final section of the paper to a discussion of some of the results obtained in
the investigation.

Because of the important physical interpretations associated with simplicial approxima-
tions, an Appendix is included in which special attention is given to the simplex representa-
tions of the deformation of finite elements. These depict the deformation in a small finite
element of the continuum as homogeneous and are derived easily from basic kinematic
arguments.

2. THEORY OF FINITE ELEMENTS

We review here the concept of finite elements as a means of obtaining discrete models of
continuous fields. Basic topological ideas are developed for spaces of dimension 3, but these
can be easily generalized to spaces of higher dimension. Details on generalizations of the
finite-element method can be found in [7].

Consider a closed region # of 3-dimensional Euclidean space ¢*. Points in ¢3 are denoted
x. We consider the region # to be the domain of a continuous single-valued function T(x)
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whose values may be scalars, vectors, or tensors of any order. By definition, the function T(x)
associates with each of infinitely many points x € # a unique value T. The problem now
considered is the following : Given T{(x) and £, construct an approximation of T(x) and #
in which the function is characterized by a finite number of its values in #. We proceed as
follows :

(1) We identify a finite number G of points in # and label them consecutively
X{,X3,...,Xg, or more concisely, X,(A = 1,..., G). These points are called nodal points
or simply nodes. The finite set of nodal points is denoted £#,,. We approximate the region #
by another region # > %, ; The regions Z and %, may or may not coincide.

(2) We denote the values of T(x) at the nodal points x, € Z by T,:

T,=Txy) A=12...,G. 2.1)

(3) We now consider a finite number E of disconnected subregions r, of & called finite
elements. Points belonging to a typical finite element r, are denoted & or £ to distinguish
them from points x € #. Ultimately, we hope to connect all of the elements together to form

22 ; but, at this point, all finite elements are considered closed and disjoint : the boundary of
E.

each element is distinct from that of all other elements. The union #* = |_J r, is referred
e=1
to as the disconnected or unassembled region.

(4) We consider each finite element r, to be the domain of a local field t9(), g er..
The local fields are continuous within their respective finite elements. Of course, on con-
necting the elements together we intend for the local fields to form the original field T(x)
over Z, but at this point the functions t?(£) are considered to be unrelated to T(x) or to
each other. Within each finite element, a finite number N, of points are identified and are
labeled consecutively &, ES,...EF), or EQ(N = 1,2,...,N,). These points are called
local nodal points or simply local nodes. The finite set of local nodal points is denoted #%.

(5) The values of t)(€) at the local nodal points &%’ € r, are denoted t§:

tY = tOEY). 2.2)

(6) The local fields t'“YE) are approximated over their respective finite elements by
functions of the form
tIAE) ~ tUE) = YIUE, t) (2.3)
where

YOEy ) = th)  Euner.. (2.4)

The functions W ) are defined only within r, and are continuous within their respective
finite elements. The functions ¥'9( )are generalizations of the familiar Lagrange interpola-
tion polynomials, though they need not be polynomials. In general, we take these functions
to be linear in the nodal values t§:

POE, € = PN (23)
wherein the repeated index N is to be summed from 1 to N,. Here the scalar-valued func-
tions (:ep)” (&) are such that

Vi) = 5% Euer, 26)

where 8¥(N, M = 1,2,..., N,)is the Kronecker delta.
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{7) The connectivity of the model is established by mapping the global nodal points x,
into the local points &%’ by the incidence relation

EY = QNx\ (2.7)
with N = 1,2...., N.ooA=1.2..... G. where

@, {1 if node &%’ of element r, is identical to node x, of the connected model. (2.8)
N = 2.

0 if otherwise.
Likewise, since one-to-one correspondences exist between T, and x, and ¢ and &', we
have

te) (e)

ty = ORT,. (2.9)

Formally, we may regard (2.7) and (2.9) as the homomorphisms Q:4, —» #¢ and
Q:G — L, where G and L are global and local spaces, the elements of which are the sets of

global values {T,} and the sets of pairs ¥ = Z Lo Lo = {y:y = (t§,EW} (see [7)). Since

the identification of nodal points is drbltrary, (2.7) also implies the mapping Q: #* — 4.
Transformations of the form in (2.7) and (2.9) were employed by Kron [9] in connection
with network analysis, and form the basis of the ““displacement method” of Argyris [10].
Oden [7] has indicated "‘compatibility conditions,” necessary for the existence of these
transformations, which insure that the proper correspondence prevails between the location
of local element nodes and global nodal points in the connected model.

(8) The final finite-element approximation T(€) of the field T(x) is given by

S © (e) .
TE) = > &) = Y YMEIQNT,. (2.10)

(()) ; =1 . . .
Ordinarily, the functions ¥(E) are selected so that T(§) is continuous across interelement

boundaries in #. For ease in constructing functions (l/J} (&) with properties (2.6) which, on
connecting the elements together, make T(E) continuous in 4, the geometry of finite elements
is usually selected to be very simple. For this reason. # and .# need not coincide. In an
appendix, we consider simplicial approximations : that is, the fields /(&) are assumed to be
linear in Eand N, = k+ 1, k being the dimension of the space.

Conjugate fields

We also remark that in all applications of the finite-element method, the primary field
T(x) which is to be approximated is accompanied by the following : (1) Another field S(x):
(2) A scalar field g(x) = T(x) * S(x). where * denotes an operation which maps T(x) and S(x)
into a scalar-valued function g(x): and (3) a functional Q[T(x), S(x)] defined by

O[T(x), S(x)] = f T(x) * S(x) d.4. (2.11)
E4

We say that S(x) is conjugate to T(x) with respect to Q[T, S]. For the finite-element model,
we have [7]

A
19
_
2
=

0= Zq“‘ Ty*S* = Y 0+ S?
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where Q is the approximate value of the functional,

(e)
St = Y QisY, (2.13)

e

and

Ste) = f ‘IZ)N(Q)S‘“’(Q) dre. (2.14)

Here s'9(€) is the portion of S(x) defined locally over r, in the connected model. Notice that
while (2.9) establishes a simple incidence relation between local and global values of the
primary field, (2.13) indicates that the global value S* at node x, is obtained by summing
all local values sj,, at the local nodes incident on x, of all elements connected to that node
in the final model of T(x). In (2.14) we say that sy, is the generalized nodal value of the
conjugate field at node N of element e, consistent with the approximation ().

3. KINEMATICS OF FINITE ELEMENTS

In this section we use the ideas developed in the previous section to describe the deforma-
tion and motion of finite elements of nonpolar media. ’

We consider a body # with material points X and identify the material point X with
its place X in a fixed reference configuration %(%). The deformation of % from its reference
configuration to its configuration at time ¢ is described by a sufficiently smooth function

x =X, 1) (3.1)

where x denotes the point occupied by the particle X at time r.
The deformation gradient Fat X and ¢is given by

F = Vvy(X, 1) (3.2)

where V is the gradient with respect to the fixed reference configuration. The velocity
gradient L and the right and left Cauchy—Green tensors B and C are given by

L=FF!, B = FF7, C = F'F - (3.3)

where the superposed dot indicates a material time derivative and ( )7 indicates transposi-
tion.

We are particularly interested in the following form of the deformation function
(X, t) in (3.1):

X, t) = X+UKX. 1 (3.4

where U(X, 1) is the displacement of X relative to the reference configuration. It follows
that

F=1+H (3.5)

where 1is the unit tensor and H = VU s the displacement gradient. Corresponding expres-
sions for L, B, and C in terms of H can be obtained by introducing (3.5) into (3.3).
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The finite element

Following the scheme outlined in the previous section and noting that in this case
k = 3, we suppose that the region x#(4#) occupied by the body 4 in the reference configura-
tion is approximated by a collection of a finite number E of finite elements, connected
appropriately together at a finite number G of places X, called nodes. Then, taking full
advantage of the fundamental property of finite element models, we temporarily consider
the elements to be disjoint and confine our attention to a typical finite element e. Element e
corresponds to a region r, which is the reference configuration of a portion B, of the body
B:r, = %(%4.). Points in r, will be denoted by Z and the N, local nodal points of the element
will be denoted by Ep(N = 1,2,..., N,).

We now consider a localized deformation x® of the element which carries the material
points E onto the current configuration in which points are denoted by &, i.e.

E=1"E 1. (3.6)
The local displacement vector over the element is then
' =§g~E (3.7

Recalling (2.9), we introduce the following local approximation of the displacement field
u'(E, 1) over the element r,:

u® = u9E, 1) = YH@uRr) (3.8)

where ¥(E) are defined in (2.10), u%’ is the displacement at node N at time ¢, and the
repeated index is to be summed from 1 to N,. It follows that

2UE, 1) = E+ ¢ EuP) 3.9

is the approximated deformation function. For the finite element then
H = (VW"(E) ® u(t))" (3.10)
FO = 1+ (VY"E) @ uf(1))". (3.11)

In addition to the purely kinematical quantities, we approximate the local temperature
field 0°)E, t) over the element by

09 = 6UE, 1) = YNER(0) (3.12)

where 6% is the temperature at node N at time ¢.

With the local approximations given by (3.8) and (3.12), it is now a simple matter to
connect the elements together and construct the complete finite-element representation of
the displacement and temperature ficlds. Let U, and @, denote the global values of displace-
ment and temperature at node X, of the connected assembly of elements. Then according
to (2.13),

(e) (e)
u 2 = Q%UA H(ﬁ) = QQG)A (313)
and finally
E (o)
UE. 1) = ) OWNE)UL®)
:1 (3.14)
(©)
OE, 1) = Y QY (E)0,1)
e=1
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In an appendix, we demonstrate that a simplex approximation of the deformation of a
continuous body depicts the local deformation within an element as a homogeneous
deformation.

4. THERMODYNAMICS OF DISSIPATIVE MEDIA

According to Coleman [8], the free energy f of a simple dissipative material can be
expressed as a functional of the total past history of deformation and temperature. Upon
reduction for material frame indifference, this is written as

f= ¢ (€. (1)

where, following Noll [11],
C' =C(t—s) & = 0(t—s). 4.2)

The functional ¢( ) is assumed to possess certain smoothness properties, the character
of which is discussed by Coleman and Mizel [12].

In the following, we record the essential equations of Coleman’s thermodynamical
theory of simple materials [8], all pertinent quantities being with respect to the reference
configuration x#(#)t:

L Tir(t) = 2p&,De ¢ (C.0 4.3)

") = =Dy o (C.0) (@4

where T(g, is the second Piola-Kirchhoff stress tensor, p, is the mass density in the
reference configuration, # is the specific entropy, and D, D, are special operators defined
in [13].

IL by = K (C, 6, V6) (4.5)
s=0

where h g, is the heat flux vector referred to the reference configurationf and K( ) is a vector-
valued functional which possesses the same smoothness properties as ¢( ).

III. The internal dissipation ¢ at time t corresponding to the pair of histories (C', 6)
is nonnegative and is obtained from ¢( ) as follows:
dct ¢l

) —59: [0/] (Ct, 0

s=0

00' = ‘—6ct (p (Ct,gt

s=0

ds

der
?1?) (4.6)

Here ¢ and d4:¢ are the partial Frechet derivatives described by Coleman and Mizel [12]
and the vertical stroke indicates that the functionals are linear in the quantity which follows ;
thatis, 6¢:¢p and dgp are linear in dC'/ds and d6*/ds, respectively.

t We adopt here notation similar to that of Truesdell and Noll [13].
1 The heat-flux functional h of Coleman [8] is not to be confused with the functional K. The two functionals
are related by

K ()= |det FIC™! h 0.
=0

s s=0
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IV. The dependence of K of (4.5) on the temperature gradient and histories (C', () is
such that
h(R). V()+p(k)()2(7 > 0. (47)

In terms of the free energy /. the local balance of energy is
pryS + o0+ pr)O = tr(T g FTVa) + Div hg, + p(gy (4.8)

where tr indicates the trace, u is the displacement vector with respect to the reference
configuration, Div is the divergence operator with respect to the place X in »(4), r is the
heat supplied per unit mass, and

o

f=2tr|FDe ¢ (C ()')FT) +Dy ¢ (C',0)0—0o. (4.9)
0 s=0

o
The above results can be combined to obtain

p(R)Hﬁ— Div h(R) — PRy — p(R)()O' = 0. (410)

To the basic equations recorded above we may add Cauchy’s first law of motion

DiV(FT'R))+p(R)b = /)(R)ii (4] ])

where b is the body force density.

5. FINITE ELEMENTS OF DISSIPATIVE MEDIA

Equations (4.3)-(4.11) describe a general theory of thermodynamics of simple media.
We now derive two special global forms obtained from (4.10) and (4.11) that are of fun-
damental importance in deriving general equations of motion and heat conduction for
finite elements of dissipative media.

Let & and 36 denote arbitrary instantaneous variations in the velocity and temperature
of a body # at time t. Taking the inner product of (4.11) with st and multiplying (4.10)
through by 6, we obtain the pair

i . Div(FT ) + pry0ti . b = pg,dit. i (5.1)
P(ry0007— 60 Div h— p()00r — p(g) 0005 = 0. (5.2)
Introducing the identities
Div(FT )011) = oit. Div(FT g)) + tr(T ) F " Vou) (5.3)
Div(é6h) = 30 Divh-+h. V50 (5.4)

and assuming suitable smoothness properties of the indicated variables, we employ the
divergence theorem to obtain the global forms

J‘ [p(R)ﬁ . ou +tr(T(R)FTV6|])] de = f p(R)ﬁl'l .bdv+ ( t(R) .on dS(R) (55)
P 4

v ap
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and
f [o(r)000% +hg, . V60 — p)0600] dv = J‘ Pry700 dv+ f 00hg, . g, dSzy (5.6)
k4 P P

where # is the part of the body under consideration, 82 is its boundary, tz, is the surface
traction referred to a surface area dSg, in the reference configuration, and n, is a unit
vector normal to dSg,. Equations (5.5) and (5.6) may be considered to be general virtual
work principles for continuous media. For thermomechanically simple media. (5.5} and
(5.6) become

f p(R)ii.éﬁdv+f 20y t1(De @ (C', )FTV) dv
k4 @ s=0

{5.7)
=J P(R)éﬁ-bdl""j t(R).él.l dS(R)
# o®
dCc' 4o
J‘ p(m956 (6 (C, &)Y+ Vo0 . K (C, 6, VO)+ p(ry08 Z C, 60— 4 ds do
(5.8)
=f r(sgp(g} dl”\“JA 58"(}'{)“(1{} dS(R)
E4 li4
where, for simplicity, we have denoted
§ (C,0) = —D, (p (C. 0
= ——2trl:FDc1)9 o (C, 9‘)FTJ+D§ @ (C, 0% (5.9)
s=0 §=0

+dc:Dy @ (C',01dCYds)+ 64Dy ¢ (C', 0d0'/ds)
5=0 5=0

w© ¢ i
Y (C‘ ()'[dd(s: (3;:) = —50 (C' ¢'|dC'/ds)— 581 (C‘, #'1de'/ds). (5.10)

Motion of a finite element

We now consider the body 4 to be a collection of a finite number E of discrete elements
A as described in Sections 2 and 3. Taking advantage of the fundamental property of
finite-element models, we isolate a typical finite element %, and consider its behavior
under the motion and temperature fields described in Section 3. Accordingly, a material
description of the velocity and temperature fields over the element is given by

W=y "E@EnE 0 = yNEWY (5.11)

where ¥V(Z) are the interpolation functions defined in (2.6) and u§’ and 6§’ are the time-
dependent displacement and temperature at node N of element e. Instantaneous variations
in these local fields at time t are clearly

da = YyVERY 80 = YN (E)S0Y. (5.12)
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Introducing (5.12), into (5.7) and simplifying, we obtain

{m(e) iy + f 2pr)
9(2) s

+ f 2pryus?
P

(e)

(e)

(e)
(E. uk. 0)VyYNE)do

[t}
oe» 8

(e)

(e)
(B, u, 0 QVYME)VYNE) dv—pﬁ"e)} s =0

T
O-S>8

where

mig' = f PaY" EWME) dv
Pey

Pl = f P(R)lﬁN(E)b do+ f YN (EN g dsr)
Pe)

0P (e)

(e (e} © (g ©
(8, uk, %) = Dc_¢ (C(u), §(6%).

] s=0

I8

s

(5.13)

(5.14)

{5.15)

(5.16)

The array mlo is the consistent mass matrix for the element, pY, is the generalized force
at node N, and @( ) is a functional of the histories of the nodal displacements and tempera-
tures. The significance of these quantities is discussed more fully in the following section.

Returning to (5.13), we observe that this energy balance for the element must hold for
arbitrary variations 5a§’ in the nodal velocities (and as a consequence of the property of
the inner product of a vector a and an arbitrary vector b,a. b = 0 = a = 0), the quantity
in braces must vanish, and we extract from (5.13) the general equations of motion for a finite

element of a thermodynamically simple media:

@© (e) (o)
mias+ [ 20w @ (& k. BoverE do
(e) s=

+ L oty B (8, uk, GIVYMEIVE) do = o)

(e) 5=0

Again, diagonally repeated nodal indices are to be summed from 1 to N,.

Heat conduction in a finite element
Substituting (5.12) into (5.8) and simplifying, we get

© (9 L)
{J P(R)E//N(E)WM(': g (& ug, ex)““pN E) (& ug, 0 ] dv
Pe) s=

( )

+ VYN E). f( E u K)dv—q(e,}éf)‘e’—

Pe)
where

K (e (o 0 (o) (o)

G (E uk, 0%) = ¢ (C'uf), 865
s=0 s=0

2 @ (o O (g) 0]

Y € uk. 6% = Y (Cu), 616%)
s=0 5=0

X @ (9 bt (e)
K @ k. B = K ), 00, vor@m

s=0 s=

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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and
qive) = J‘ p(R)lllN(E)r dU + l//N(E)h(R) . n(R) dS(R). (522)
Ed

(e) 59(2)
The functionals defined in (5.13)-(5.21) represent the entropy production internal dis-
sipation, and heat flux for the finite element. We observe that each involves only the

@ (9
histories (uly, 8%) of the nodal values of the displacement and temperature. Note that
due to the character of the local temperature field over the element, the dependence of

a0
K ()on the temperature gradient history is reflected in only a dependence on the histories

(¢ x
of the nodal temperatures 6% in K (). In (5.22) the quantity g, represents a generalized
s=0

normal component of heat flux at node N of element e. Further properties of these func-
tionals and generalized fluxes are discussed in Section 6 of this paper.

Since (5.18) must hold for arbitrary variations 66 in the nodal temperatures, the
quantity in braces must vanish, and we arrive at the general equations of heat conduction
for a finite element of a thermodynamically simple media

0 e (e X
| pm[w“(s)w"(s)oa? 4 @ G@ Y @ ] do
n © ’ @ ( ) _ (5.23)
+ | WG K (E uk, 09do = qly(t)
Pey s=0
Global forms
Equations (5.17) and (5.23) represent the equations of motion and heat conduction for
a single finite element. To obtain the corresponding equations for the entire collection of
elements, all connected appropriately together to form the complete discrete model of
the media, we must introduce the notion of global values of the fields (&, t) and 4(Z, ¢)
and the mappings Q:% — ¥ described in (3.13) and (3.14).
Let P4 and Q%A = 1,2,..., G) denote the global values of generalized force and heat
flux at node A of the connected system of elements. Then, since P(E, t) and Q(E, 1) are
conjugate to u(Z, ¢) and 6(E, t), respectively, we have, according to (2.17),

(o
ZQNM Q4 = ) Qugly. (5.24)
Introducing (5.17) and (3.13) into (5.24), , we obtain

MATUr+ @* (UL, O+ ‘I‘Ar (UL, ®)Ur = PX) (5.25)
s=0 s=0
where
(9 (e)
M = . A, (5.26)
hog (e (e) (e)

@ (U, 07) = 3 Q) 20 RVYN(E) <P (=, Qer.Q Or)dv (5.27)
s=0 Py
w© [LRG] @ (€2 (9
P (U, B) = Zﬂﬁﬂﬂf 208 tr[ ¢ (& QkU,, Q}0)AYNE) ® AW"(E)] dv
s=0 e P s=0

(5.28)
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Here MA" is the mass matrix™ for the entire assembly of elements, and ®{ } and V() are
functionals to the 2G histories Uy and @), of the nodal displacements and temperatures,

Equation (5.25) is the final equation(s) of motion of the assembly of finite elements.
Boundary and initial conditions are applied by merely prescribing the nodal displacement
U, or force P, at boundary nodes. or by prescribing initial values of these quantities at
global nodal points.

Turning now to the heat conduction equations, we introduce (5.23) and (3.14) into
{5.24), and obtain

G (U, ©4)8 + §* (Uy, @)+ HA (UL, ©%) = 01) (5.29)

§=0 s=0 §s=0

where

Prey

*o (¢) {0 X (e (e
G (Ut 05) = X Q30 f PR [w”(E)W(E) Y (= QUL QJ@;)] de  (5.30)

X L'} {e}

Sl (U, ZQ*‘ YN(E) Z (E. QUL QLOY) dr (5.31)
Py

* (e kS (&) . [

H* (UL, ©)) = Y Q3 VY (E) K (E.QLUL QO dr. {5.32)

s=0 o oy s

Here G( ), S() and H( ) are functionals of the 2G histories U}, and @, of the nodal displace-
ments and temperatures.

Equation (5.29) is the final equation of heat conduction for the assembly of finite
elements.

6. DISCUSSION

The terms appearing in the equations of motion and heat conduction admit to interest-
ing physical interpretation. As noted previously, the array ms! of (5.14) is the consistent
mass matrix for finite element e [14]. The array M2T of (5.25) is its counterpart for the entire
assembly of elements. Physically ml,} represents a generalized “inertia-force” at node N
due to a unit (virtual) acceleration at node M, 5ii}] = 1. The array m{}" reflects the manner
in which the total mass of an element is to be distributed to each node so that the total
kinetic energy of the element is consistent with the approximate acceleration field Y (2)i{’.

The force pyy, of (5.15) represents the generalized force at node N of element e, computed
so as to be consistent with the velocity field ¢¥(E)u’ over the element. In general, pfY, can
be decomposed into a part due to body forces and a part due to surface tractions:

p?;) = b?i,) + tl(\:)) (6~ l )
where, according to (5.15),
bfi‘) = J‘ p(R)l//N(E)b dl? t?.’z) = (,{/N(E)t(;n dS(R). (62)
Piey 2o

Now the term pfi,. 38'® in (5.13) represents the mechanical power P, of the element
developed by the external forces. Thus, b and t(, are conjugate to the velocity field sa'®
with respect to the mechanical power of the element. It follows that by, and tf}, are
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concentrated forces lumped at nodes N of element e in such a way as to develop the same
mechanical power as the distributed body forces b(Z, t) and tractions t (&, t).

In (6.2), we observe that the calculation of the forces tf%, involves integration over a
surface element dS g, with outward unit normal n, in the reference configuration. The
tractions t, however, are usually available to us only in the current configuration and it
becomes necessary to relate the current surface element ds to the element ds, as follows
[13]:

dS = \/(JII(R) . C- 1ll(R)) dS(R) (6.3)
where C ! is the inverse of the deformation tensor in (3.3); and
J = |detF| = /det C. (6.4)

Similar calculations are required in computing the generalized heat fluxes in (5.22).
In this regard, note that in addition to being able to prescribe either a generalized heat
flux or temperature at boundary nodes, it is also possible to consider boundary-layer
effects for the finite-element model. The procedure outlined by Oden and Kross [15] for
linear thermoelasticity is applicable in this case provided that the current surface element
and its orientation is related to the reference configuration in the manner indicated above.

To interpret the global forces P* in (5.24),, note that the total variation in mechanical
power of the collection of elements due to the instantaneous local variations day is

oP = P2 U, = Y 0P, (6.5)

(e) . »
where 5P, = pi,. 0w’ and sul’ = Q46U,. Thus. for arbitrary variations sU, in the nodal
0 = Py y
velocities

(e)
(P4~ Y QFpl) . 8U, = 0. (6.6)

Therefore. (5.24), follows from the fact that the total mechanical power of the disjoint
elements developed by instantaneous variations in the nodal velocities is the same as that
of the connected assembly of finite elements.

In view of (6.1) and (5.24), , it is clear that

P* =B*+T2 (6.7)
where

(e) (e}
B =Y Ob, T =YOM, (6.8)

The local nodal force tfy, of (6.2), is the analog of stress in the discrete model of the con-
tinuum. Consequently, on assembling the collection of finite elements into a single discrete
model of the entire body 4, the local values tf;, play the role of contact forces and sum
vectorially to zero at interior (global) nodal points. Thus T is zero except at nodal points
on the boundary. The forces B2, however, exist at the nodes of all elements in which body
forces are present.
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Equation (5.16) reflects the fact that the histories (C', #') for a finite element are uniquely
determined by the histories of the nodal values of displacement and temperature. Hence,

x (&) (e}
the functional D¢ ¢ ( } can be reduced to a functional of (u. #%). The dependence on
s=0

m

can be eliminated by integration over the volume of the element once a specific form of

( ) has been identified.

4]
The question of convergence cannot be thoroughly explored until specific forms of the

reduced constitutive functionals [e.g. (5.30}+5.32)] have been specified. However, mean
convergence of 8%, §¢ to u and 6 can be guaranteed, independent of the form of these func-
tionals, provided the weli-known completeness and continuity requirements are met (cf.
[16]-{18]). For example, since u(x, t) is continuous and finite everywhere and uy’ = u(g$, 1),
u(x, ) is bounded in r.. Thus, with {uf? = {,u.udr, there is positive M such that
lu—ugll < M. Likewise, for arbitrary Ecr,, lu—y Emgl < K where K depends on M.
Since (&) are complete and are selected so that W(E, £) is continuous, it is clear that both
M and K can be made arbitrarily small if the network of elements is appropriately refined
(see Synge [16] or Key [17]). While the more important problem of convergence of, say
| F@)| = | Fw|, () being a nonlinear operator, cannot be rigorously resolved,
definite statements can be made concerning special cases of (5.25) and (5.29). For exampile,
in the case of small deformations of a hyperelastic solid, {5.25) reduces to the well-known
finite element equations derived from minimum potential energy considerations. Thus,
our model appears to provide a lower bound to the energy, at least in this case. Moreover,
from a physical viewpoint and in view of the assumed smoothness of the integrands in
(5.5) and (5.6), convergence of 8 and u appears likely in very general cases due to the fact
that each is uniquely defined within an element by a simplex approximation (see the
Appendix) which arises physically by expanding the temperature and deformation about
some reference state.

8
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APPENDIX

Homogenous deformations and temperature fields

An important case of the general finite element which has been described in Section 3
is obtained if we choose topological simplexes for finite elements [6, 7]. A simplex element
in three-dimensional space has four vertices (N, = 4) and may be regarded as a tetrahedron.
The importance of this element does not lie totally in the fact that they are geometrically
as well as algebraically simple, rather, it has to do with the physical significance of the
simplex approximation,

Consider a three-dimensional simplex finite element, r,, with nodal points
Ex(N = 1,2,3,4) in the reference configuration. The approximation of the local deforma-
tion y'? will be made by assuming x‘® to be homogeneous, i..

& =%9E, 1) = §(t) + F)E—F,) A1)

where E, is a point in k(8.), Eq = ()8, 1), and F(¢) is a second order non-singular
tensor,

The objective is to express the tensor F{? in terms of nodal values. To this end the point
Z, in (A.1) is identified with the node labeled 4. It follows that

DE)=E-&,, d@=8-& (A.2)

are respectively the position vectors relative to mode 4 for the point Z e x(%,)and the point
£ e'9A,, t). Until further notice all primed indices will have the range 1, 2, 3. Introduce
at node 4 in x(%#,) a set of three independent directors Dy. defined by

Dy = DEy). (A.3)

It can be seen that the Dy. are the position vectors relative to node 4 for the nodes 1, 2, 3
and are therefore known geometrical entities.

The deformation carries Dy onto the dy. which are the position vectors relative to node
4 of nodes 1, 2, 3 in the spatial configuration, i.e.

dy(t) = F9(1)Dy.. (A.4)
Reciprocal directors D', d¥' can be introduced through the definition
DV D, =Y., .4y = &Y. (A.5)

It can easily be shown that the deformation gradient F¢, its inverse, and the right Cauchy—
Green tensor C'? are given by

FO) = 4y ®DY,  F) = Dy @ d¥(1)
Ct) = dyp (D" @ DM’
where dy-p = dy. . dy.. The velocity field is
¢ = V& 1) = va(0)+@AE). 4V(O)dn () A7)

where v, is the velocity of node 4.
We may also choose to write the velocity field in terms of Lagrangian functions W¥(g)

(A.6)
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(N = [, 2.3,4) defined over ¥'(B,. 1), in which case

v(E, 1) = YN E)vnlr) (A.8)
where
4
YV(E) = d(&) vy YN =1 (A.9)
N=1 .

Recall from (2.6) that W¥(&,,) = dy;. Also
d(€).d¥ = DE). DV (A.10)

Thus, the velocity field can also be written in terms of Lagrangian functions W"(§) defined
over k(4.):

I

VE, 1) = PYEwt) (A.11)

where
EX
YY(@E) =DE).DY, Y ¥NE) =1 (A.12)
N=1

Let uy denote the value of the displacement field at the nodes. Then considering that
iy = vy and uy(0) = 0 we have

uE, 1) = Y¥Eu, (1) (A.13)
Also in view of (A.2), and (A.13) the displacement gradient H? is obtained as
H(t) = uylt) ® o (A.14)
where
3
o' =DV, ¢*=-> D" (A.15)
N=1

The right Cauchy—Green tensor for the finite element is given by
CY) = 1+uy(0) ® 0" +0" ® uy(t)+(uy(t) uy(0)o" ® 9. (A.16)

Let us now consider the local temperature field 64&, r) which we approximate over
1A, 1) by

(&, 1) = O4(1)+2(1). d(&) (A.17)

where 0,(t) is the temperature at node 4 and g(¢) is a time-dependent vector independent of
g given by

3
g(r) = Ox ()™ —0,(1) 3 dY. (A.18)

N'=1

Here 0y-r) is the temperature of nodes 1, 2, 3. We may also choose to write the temperature
#in terms of Lagrangian functions W(€), W¥(E), in which case

OE, 1) = PYE)ON), OE, 1) = Y¥E)N(1). (A.19)

(Received 26 September 1968 ; revised T March 1969)
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AGcrpakT—PaboTa KacaeTca pa3BuTUs OOLUIMX JUCKPETHBIX MOAENeH, ClToCOOHBIX BOOJIHE OMucaTh obiee
TEPMOMEXAHUYECKOE MTOBEAECHHE IHPOKOTO K1acca HETMHEHHBIX MATEpPHAJIOB C 3anoMuHanneM. Mcrmons3y-
joTcAd o0liMe KOHUENIMY KOHEYHOro 3/1eMEHTa, B CBA3HM C TEPMOAMHAMMKOW MpPOCTHIX MAaTepHAIOB
Konemana, 1N/ NONYYeHHSs YPAaBHEHUM NBIDKEHHS M TEIUIONPOBOOHOCTH IS KOHEYHEIX 3JIEMEHTOB
HENUHEHHBIX KOHTHHYYMOB. OIlpenensieTcs KMHEMATHKA KOHEYHBIX DJIEMEHTOB B OOILMX BBIPAXKECHHSAX,
CMELMANIBHO YYMTBHIBAS KAEIO, YTO JIOKAILHO OJHOPOAHbIE nedopMalivi W MONA TeMIepaTypbl PaBHbI
CHUMILIEKCHBLIM NPHONMKEHUAM CoENaHHbIM Ha 3neMeHTe, [TpoBEepAIOTCA HEKOTOPbIE YpaBHEHUSA TEPMOAKH-
aMHYeCKON Teopuu MarteprasioB KojeMana, ucnonb3ys uX M pa3paboTky ypabHEHHWiH, Kacalowmxcs
MOBEIEHHUS THIIMYHOTO KOHEYHOro 3neMeHTa. He naeTcs HUKaKUX OrpaHMyYeHui, KacarolUMXCst TPaINeHTOB
nebopMauny WM TPAAMEHTOB TeMNEPATYphi. TIPHBOAATCA TOMOJOrMYECKHE CBOMCTBA COBOKYIMHOCTH
TAKMX JJIEMEHTOB [l TIOCTPOEHUS TIOTHBIX, AUCKPETHBIX MOIE/IEH HUCCHUITATUBHBX CPEIl C MPOM3BONBHON
reOMeTpHeil, HauyaJbHbIMY M I'PAHMYHBIMY YCIIOBUAMM.



